
Converting Prose into Rhyming Poetry

Luke Allen
Stanford University

source@cs.stanford.edu

Abstract

This paper explores several rule-based
strategies to modify sentences in order to
change length and word order while
retaining the original sentence meaning.
These strategies are then applied to create
an application which converts English text
into rhyming lines of poetry.

1 Introduction

Automated poetry generation is an interesting and
mostly unexplored proving ground for paraphrase-
generation algorithms. This paper briefly explores
three types of rule-based sentence paraphrasing
methods: deletion of non-essential text,
rearrangement of phrases, and replacement of a
word by its synonym. These methods are combined
into an application which can rearrange an
arbitrary input text into pairs of rhyming lines,
while usually preserving a fair amount of the
original meaning.

2 Related Work

Most work on sentence paraphrasing has focused
on machine-translation methods, which use parallel
corpora to identify phrases which have a similar
meaning, as discussed in (Wubben et al., 2010).
Machine translation is popular because it is the
most general approach.

However, a smaller but still useful set of
paraphrases can be generated by simple rule-based
approaches using operations on parse trees. For
example, Daelemans et al. (2004) discuss a system
which can shorten sentences by deleting non-

essential modifiers.
Automated poetry generation itself has

received little research focus to date. A literature
review identified only one other attempt at actual
generation of poems, by Genzel et al. (2010), who
modified the cost function of a machine translation
system to control the syllable count of its
translations, and then searched its possible
translations of foreign-language poems to find
English rhymes.

3 Algorithm

Each paraphrase method will be discussed as it
applies to the poetry-generation algorithm:

3.1 Prerequisite: Testing Rhymes

The Carnegie Mellon Pronunciation Dictionary
conveniently provides word pronunciations in the
form of an array of phonemes. To determine if two
words rhyme, we can simply compare their
phoneme arrays, moving from the right. If the first
consonants and the first vowel match, the words
are considered to rhyme. Further matches produce
a higher score.

Words' phoneme arrays are also used to
determine syllable counts of a line of poetry. For
words not in the CMU dictionary, a library by
Sucher (2012) is used to guess the pronunciation of
the last syllable and also to guess the word's
syllable count.

3.2 Synonym Substitution

First, the algorithm uses the Stanford Parser to
parse the original prose. This provides part-of-
speech tags as well as other information which will

be discussed later. WordNet and VerbNet are used,
via the Python Natural Language Toolkit, to build
a list of possible synonyms for each word.
WordNet hypernyms are also included, because
these usually preserve meaning. (Hyponyms were
also tried, but experimentally these tended to be
much worse at preserving meaning, even if we
allow for very generous “poetic license.”)

Each synonym in a word's synonym list is
given a meaning-preservation score: The original
word gets a perfect score. Synonyms from the most
common (i.e. first) WordNet synonym set for the
word are assumed to be most similar and are
ranked next. Hypernyms are ranked lower than
synonyms. (A full word sense disambiguation
(WSD) algorithm has not been added, but good
WSD would certainly improve accuracy here.)

3.3 Finding possible rhymes

Once a synonym list has been built for
each word, each word is checked against all nearby
words, to see if any of their synonyms rhyme. The
result of this check is a list of possible rhymes in
the local section of text. These possible rhymes are
ranked by (rhyme quality score) * (meaning-
preservation scores of the two rhyming synonyms).
In a local area of 3 sentences, typically between 10
and 200 such rhyme pairs are identified.

At this point, we could simply take the best
rhyme pair and insert a newline after each of the
two rhyming words. (After replacing the words
with synonyms, if necessary for the rhyme.) That
would be a simple way to produce lines which
rhyme. (See Figure 1, above)

However, the lines will probably be
different lengths, in syllables. In order for the text
to sound like a poem, the lines must be the same
number of syllables, or very close. So, we need to
paraphrase the involved sentences to match the line
lengths. The following paraphrase methods will be
attempted for each possible pair of rhyming words.

3.4 Phrase rearrangement

Note that prepositional phrases which act as
modifiers can generally be moved freely within
their larger phrase while preserving meaning. E.g.
“I noticed that he walked under the bridge” → “I
noticed that under the bridge he walked.” The
basic parse tree output by the Stanford Parser
identifies prepositional phrases as a subtree under a
larger phrase. Thus, during parsing, we can make a
list of prepositional phrases and the destination
they can move to. Currently, the only destination
used is the beginning of the larger phrase. Other
locations are possible, however. Also, other phrase
types such as adverbs and temporal and locative
pronouns (e.g. “now,” “somewhere”) could also be
moved, but the algorithm currently does not
attempt this.

So, after parsing the original text, this
method yields a list of phrase movement options
(in the form of phrase, destination pairs). The
algorithm identifies which of these movements
would affect the rhyming lines being investigated.
Usually the number of relevant movement options

is small (under 10), so it is feasible to try all 2n

possible combinations of movements. (This is
easily done in code by using the bits of an integer
counter to select the options to apply.) If the
number of movement options is too large, the
algorithm defaults to just trying each one
individually.

Each possible rearranged section of text is
passed to the final line-length-trimming stage
below.

3.5 Deletion of non-essential words

It is often possible to delete adverbs,
adjectives, prepositional phrases, and sometimes
whole sentences without corrupting meaning.
These deletable phrases are identified in the basic
parse tree from the Stanford Parser. Each deletable
phrase is given a meaning-preservation score based
on its part of speech (adverbs are scored as most
deletable, then adjectives, then sentences, then

Figure 1: A pair of rhyming words defines two poetry lines. Paraphrasing rules can then be used to
match their length.

prepositional phrases. Also, adverbs/adjectives
which represent negation are not deletable.)

Because some deletable phrases are inside
other deletable phrases, the algorithm stores them
as a “forest” of trees. The root node of each tree is
an instruction to delete an entire sentence, and its
children are instructions to delete phrases within
the sentence. (Note that because this structure
came from a tree, sibling phrases are always
independent of each other, with no overlap in the
words they delete, and children are entirely
contained in the parent phrase. See Figure 2,
below.)

To match the length of two rhyming lines, the
algorithm must search all combinations of relevant
deletions. At first glance this appears very
computationally complex, but it can actually be
performed in polynomial time. (See Appendix B.)

If the lengths of two rhyming lines can be
made to match, they are saved, along with a total
rhyme-and-paraphrase score calculated as:

(rhyme quality) * (synonym quality) * (meaning
preservation of rearrangements) * (meaning
preservation of deletions)

The best-scoring rhyme pair is printed. Then, any
word rearrangements are applied to the original
text (to maintain consistency with the lines printed
so far), and the whole algorithm is repeated on an
excerpt which begins with the next word in the
original text. (The algorithm simply chooses each
rhyme pair greedily with no attempt at optimizing
future rhymes.)

4 Results

When tested on excerpts from books, the
algorithm almost always finds rhymes
successfully. This is to be expected because of the
very large combinatorial space provided by the
paraphrase methods above.

The rate of successful meaning-
preservation for each paraphrase method tends to
vary with the writing style of the original text,
which makes numerical success rates unreliable.
So results are discussed somewhat subjectively
here:

Of the tested paraphrase methods,
synonym substitution was most likely to corrupt
sentence meaning because of the difficulty of word
sense disambiguation. Synonym substitution is
unavoidable for automated rhyming, so better
WSD would provide the single largest
improvement to the algorithm.

The deletion of non-essential modifiers is a
powerful tool for controlling line length, and it
usually preserves meaning. However, the part-of-
speech labels in the basic parse tree are not always
sufficient to identify whether a phrase is non-
essential. The more advanced Stanford dependency
parse would likely allow better deletion rules. (E.g.
it could identify that the prepositional phrase is
essential in the sentence “He was under the bridge”
but not essential in “He walked under the bridge.”)
This was not investigated further due to time
constraints, but would likely yield a large
improvement in meaning-preservation.

Phrase rearrangement was by far the best
at preserving meaning. Unconventional phrase
arrangements are often used by human poets, and
are usually easy to understand. Therefore,
investigating more rearrangement rules would
likely be very fruitful future work in paraphrase
generation.

Samples of inputs and outputs are in
Appendix A below. Besides paraphrase quality, the
largest weakness relative to human poems is in the
rhythm of the rhymes: human poets almost always
locate rhymes at natural pauses, such as the end of
a sentence or phrase. The algorithm assigns a
higher score to rhymes at the end of a phrase, but
the existing paraphrase rules are not powerful
enough to reliably find rhymes at the end of a
phrase. More paraphrase options would improve

Figure 2: An example tree from the forest of
deletion options. The deletable sentence

contains one deletable prepositional phrase,
which contains two independently deletable
adjectives. The tree structure captures those

relationships.

this.

5 Future work

As discussed above, the quality of the rules-based
paraphrases would be improved by better WSD,
better classification of deletable phrases, and more
paraphrasing rules. Another unexplored paraphrase
option is to pad sentence length by inserting filler
words with low meaning content. This could be
efficiently added to the existing word-deletion
step, and would add flexibility for cases where the
original text has few deletable modifiers.

Even with its currently limited number of
paraphrase rules, the algorithm demonstrates the
flexibility of rule-based paraphrase generation. It
also highlights the potential for poem generation as
a proving ground for paraphrase generation in the
presence of constraints.

References

Daelemans, Hothker and Sang, 2004. Automatic
Sentence Simplification for Subtitling in Dutch and
English. University of Antwerp.

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. Proceedings of the 41st
Meeting of the Association for Computational
Linguistics, pp. 423-430.

Genzel, Uszkoreit, and Och, 2010. “Poetic” Statistical
Machine Translation: Rhyme and Meter. Google Inc.
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
158–166, MIT, Massachusetts, USA

Princeton University "About WordNet." WordNet.
Princeton University. 2010.
<http://wordnet.princeton.edu>

Sucher, 2012. Nantucket: An Accidental Limerick
Detector.
http://www.daniellesucher.com/2012/04/nantucket-
an-accidental-limerick-detector/

Wubben, van den Bosch, Krahmer, 2010. Paraphrase
Generation as Monolingual Translation: Data and
Evaluation. Tilburg University, The Netherlands

Appendix A. Sample Outputs

Below are sample inputs and the algorithm's
output. The average execution time for these

samples was 1.5 seconds per line on a modern
quad-core PC. (No attempt was made to choose
examples where the algorithm does well. Also,
because it is a greedy algorithm, there are usually a
few words left at the end with no possible rhyme.)

(From Superiority by Arthur C. Clarke):
The ultimate cause of our failure was a simple one:
despite all statements to the contrary, it was not due to
lack of bravery on the part of our men, or to any fault of
the Fleet's. We were defeated by one thing only-by the
inferior science of our enemies. I repeat-by the inferior
science of our enemies.
When the war opened we had no doubt of our ultimate
victory. The combined fleets of our allies greatly
exceeded in number and armament those which the
enemy could muster against us, and in almost all
branches of military science we were their superiors.
We were sure that we could maintain this superiority.
Our belief proved, alas, to be only too well founded.

Of our failure the ultimate cause
was a simple one: of the Fleet 's, it was
not to lack, or to any fault. When the war capsize
we had no doubt. The combined fleets of our allies
exceeded those which the enemy could summon
against us, and of scientific discipline
in all branches we were their leader.
Our psychological feature
proved alas to be only too well founded. *<--no rhymes

[This example had some deletions of essential
words but otherwise has good paraphrase quality.]

(From The Adventures of Sherlock Holmes by Arthur
Conan Doyle):

Sherlock Holmes was transformed when he was hot
upon such a scent as this. Men who had only known the
quiet thinker and logician of Baker Street would have
failed to recognise him. His face flushed and darkened.
His brows were drawn into two hard black lines, while
his eyes shone out from beneath them with a steely
glitter. His face was bent downward, his shoulders
bowed, his lips compressed, and the veins stood out like
whipcord in his long, sinewy neck. His nostrils seemed
to dilate with a purely animal lust for the chase, and his
mind was so absolutely concentrated upon the matter
before him that a question or remark fell unheeded upon
his ears, or, at the most, only provoked a quick,
impatient snarl in reply. Swiftly and silently he made his
way along the track which ran through the meadows,
and so by way of the woods to the Boscombe Pool. It

was damp, marshy ground, as is all that district, and
there were marks of many feet, both upon the path and
amid the short grass which bounded it on either side.
Sometimes Holmes would hurry on, sometimes stop
dead, and once he made quite a little detour into the
meadow. Lestrade and I walked behind him, the
detective indifferent and contemptuous, while I watched
my friend with the interest which sprang from the
conviction that every one of his actions was directed
towards a definite end.

His face flushed and shrivel.
His brows were scribble
into two hard black lines, while his eyes
shone out. His face was bent, his shoulders rise,
his lips compressed, and in his long, neck the veins straddle
out like whipcord. His nostrils seemed with a animal
lust for the chase to dilate, and before
him his mind was so that a question or
remark fell disfigure
or, at the most, bewilder
a quick, snarl in reply. Swiftly
and silently he decree
his way along the track which, and through
the meadows by way of the woods brew
to the Boscombe Pool. It was, marshy ground, as is
all that district, and amid the short grass which whiz
it on either side there were marks of many pes,
both upon the path and. Sometimes Holmes would traipse
on, stop, and into the parcel
once he made quite a little
detour. Lestrade and I shuffle,
the detective and disdainful,
while with the interest which sprang that every single
was directed towards a definite terminal
 I watched my friend. *<--no rhymes

[This example shows some bad synonym
substitutions. And, the synonym-substitution
algorithm currently only inserts the root word
(lemma) of a synonym, so it doesn't match verb
form or noun plurality. Also, the deletion
algorithm currently doesn't remove conjunctions
when necessary.]

(From Atlas Shrugged by Ayn Rand):
“To trade by means of money is the code of the men of
good will. Money rests on the axiom that every man is
the owner of his mind and his effort. Money allows no
power to prescribe the value of your effort except the
voluntary choice of the man who is willing to trade you
his effort in return. Money permits you to obtain for
your goods and your labor that which they are worth to

the men who buy them, but no more. Money permits no
deals except those to mutual benefit by the unforced
judgment of the traders. Money demands of you the
recognition that men must work for their own benefit,
not for their own injury, for their gain, not their loss–the
recognition that they are not beasts of burden, born to
carry the weight of your misery–that you must offer
them values, not wounds–that the common bond among
men is not the exchange of suffering, but the exchange
of goods. Money demands that you sell, not your
weakness to men’s stupidity, but your talent to their
reason; it demands that you buy, not the shoddiest they
offer, but the best that your money can find. And when
men live by trade–with reason, not force, as their final
arbiter–it is the best product that wins, the best
performance, the man of best judgment and highest
ability–and the degree of a man’s productiveness is the
degree of his reward. This is the code of existence
whose tool and symbol is money. Is this what you
consider evil?”

Money allows no power to prescribe the value
of your effort except the choice. Money permits you
to obtain for your goods and your
labor that which they are, but no more.
Money permits no muckle
except those to mutual
benefit by the view
of the traders. Of you
money demands the recognition that for
their injury, born of your misery to store
 the weight-- ***** <--no rhymes
that you must offer them values, not wounds-- that the bail
is not the exchange, but the exchange adult male
must work, not. And when by trade--, not force, as their
final arbiter-- men live it is the best ware
that of best judgment and highest
ability wins, the practiced
performance, the humanity--
-- and the degree is the degree
This is the code whose tool and abstraction
is money. Is this what you imagine
 evil? ***** <--no rhymes

[This example showed bad paraphrasing
performance. This is because the original text had
very few unnecessary modifiers and very carefully-
chosen words, so both deletion and synonym-
substitution tended to destroy meaning. This
highlights the need for better WSD and for an
option to add filler words.]

Appendix B. Word Deletion Algorithm
This section describes details of the algorithm
which deletes words to match the length of two
rhyming lines, introduced in section 3.5 above.

Our goal is to list the best ways to remove
between 0 and MaxSyl syllables from a line, where
MaxSyl is the difference between the original line
length and a user-specified minimum line length.
(We are obviously not interested in removing more
syllables than that.) Once we have a list of the way
to remove each number of syllables, we will know
the achievable line lengths for line A, and after
running the same algorithm on line B, we can
identify possible matching lengths.

The problem of finding the best way to
remove a given number of syllables from a line of
text is actually an example of the known “0-1
Knapsack Problem with integer weights.” It can be
solved in polynomial time, using the insight that
we are only interested in a finite number of deleted
syllables, and we are not interested in multiple
ways to delete the same number of syllables (only
the best-scoring way).

Recall Figure 2 in section 3.5. A given line
to be shortened contains a “forest” of such
sentence-level deletion trees (or portions of the
sentence-level tree, in cases where the sentence is
not entirely contained in the line). We can put an

artificial node on top to turn that “forest” into a
new tree which is entirely inside the line in
question. Then we use a recursive algorithm to find
the possible combinations of deletion options for
that tree.

The heart of the algorithm is to build, at
each node, a small Python dictionary which holds
{key: value} entries of the form:

{numSyllables to delete: List of nodes to delete to
best accomplish that}

The dictionaries for the bottom “leaf” nodes
include only options to delete 0 syllables and to
delete themselves. Each higher node builds a
dictionary by combining its independent children.
This is done by combining each entry from child
1's dictionary with each entry from child 2
(including the entry which removes 0 words). We
will fill the dictionary for the higher-level node
with the best resulting option for deleting each
number of syllables. (See figure below.)
Combinations which are not the best-scoring for
their syllable count, or which yield more than
MaxSyl deleted syllables, are discarded. Last, the
high-level node adds the option to delete itself.

Note that the children's dictionary entries
are only combined as whole units. It is never
necessary to combinatorially break apart a child's

Appendix B Figure 1: Example of combining two children's dictionaries

entry; if the components of an entry were useful in
other combinations, those would already be
represented by other entries in that child's
dictionary, because the child had tried all
combinations while making its list.

After running this recursive algorithm, the
very top node will contain the list of all possible
numbers of syllables which can be deleted, up to
MaxSyl. The complexity is roughly

O(MaxSyl2 * number of deletable nodes)

which scales roughly with (line length)3. This is
fast enough that we can easily run it on each of the
possibly thousands of sentence rearrangements that
the other algorithms generated.

